LOGISTIC REGRESSION VARIABLES Q_8_d_IX

/METHOD=ENTER Stratifiziertes_Alter

/SAVE=PRED DFBETA

/CRITERIA=PIN(.05) POUT(.10) ITERATE(20) CUT(.5).

Logistische Regression

Zusammenfassung der Fallverarbeitung

Ungewichtete Fälle ^a		N	Prozent
Ausgewählte Fälle	Fälle Einbezogen in Analyse		100,0
	Fehlende Fälle	0	,0
	Gesamt	817	100,0
Nicht ausgewählte Fa	0	,0	
Gesamt	817	100,0	

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

Codierung abhängiger Variablen

Ursprünglicher Wert	Interner Wert	
nein	0	
ja	1	

Block 0: Anfangsblock

Klassifizierungstabelle^{a,b}

			Vorhergesagt		
				ofschmerz: vor Arztdiagnose	Prozentsatz der
	Beobachtet		nein	ja	Richtigen
Schritt 0	Clusterkopfschmerz:	nein	457	0	100,0
Selbstdiagnose vor Arztdiagnose	ja	360	0	,0	
	Gesamtprozentsatz				55,9

a. Konstante in das Modell einbezogen.

Variablen in der Gleichung

		Regressionsko effizientB	Standardfehler	Wald	df	Sig.	Exp(B)
Schritt 0	Konstante	-,239	,070	11,462	1	,001	,788

b. Der Trennwert lautet ,500

Variablen nicht in der Gleichung

			Wert	df	Sig.
Schritt 0	Variablen	Stratifiziertes_Alter	16,951	1	,000
	Gesamtsta	tistik	16,951	1	,000

Block 1: Methode = Einschluß

Omnibus-Tests der Modellkoeffizienten

		Chi-Quadrat	df	Sig.
Schritt 1	Schritt	17,103	1	,000
	Block	17,103	1	,000
	Modell	17,103	1	,000

Modellzusammenfassung

0.1.111	-2 Log-	Cox & Snell R-	Nagelkerkes R-
Schritt	Likelihood	Quadrat	Quadrat
1	1103,956 ^a	,021	,028

a. Schätzung beendet bei Iteration Nummer 3, weil die Parameterschätzer sich um weniger als ,001 änderten.

Klassifizierungstabelle^a

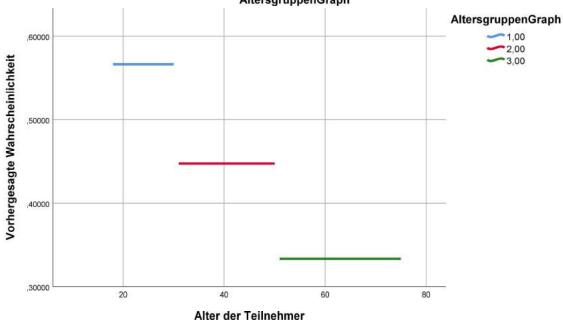
Vorhergesagt Clusterkopfschmerz: Selbstdiagnose vor Arztdiagnose Prozentsatz der nein Richtigen Beobachtet Schritt 1 Clusterkopfschmerz: 404 53 88,4 nein Selbstdiagnose vor 283 77 21,4 ja Arztdiagnose Gesamtprozentsatz 58,9

Variablen in der Gleichung

		Regressionsko effizientB	Standardfehler	Wald	df	Sig.
Schritt 1 ^a	Stratifiziertes_Alter	-,481	,118	16,632	1	,000
	Konstante	,748	,251	8,879	1	,003

a. Der Trennwert lautet ,500

Variablen in der Gleichung


		Exp(B)
Schritt 1 ^a	Stratifiziertes_Alter	,618
	Konstante	2,113

a. In Schritt 1 eingegebene Variablen: Stratifiziertes_Alter.

```
* Diagrammerstellung.
GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES=Q_4___CT PRE_1 AltersgruppenG
raph MISSING=LISTWISE
    REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE.
BEGIN GPL
  SOURCE: s=userSource(id("graphdataset"))
  DATA: Q 4 CT=col(source(s), name("Q 4 CT"))
  DATA: PRE 1=col(source(s), name("PRE 1"))
  {\tt DATA: AltersgruppenGraph=col(source(s), name("AltersgruppenGraph"), unit.}\\
category())
  GUIDE: axis(dim(1), label("Alter der Teilnehmer"))
  GUIDE: axis(dim(2), label("Vorhergesagte Wahrscheinlichkeit"))
  GUIDE: legend(aesthetic(aesthetic.color.interior), label("AltersgruppenGr
aph"))
 GUIDE: text.title(label("Mehrere Linien von Vorhergesagte Wahrscheinlich
keit Schritt: Alter ",
    "der Teilnehmer Schritt: AltersgruppenGraph"))
  ELEMENT: line (position (smooth.spline (Q_4__CT*PRE 1)), color.interior (Alt
ersgruppenGraph),
   missing.interpolate())
END GPL.
```

GGraph

Mehrere Linien von Vorhergesagte Wahrscheinlichkeit Schritt: Alter der Teilnehmer Schritt: AltersgruppenGraph

